“至于你们刚刚说的推重比问题,我们直接放弃3-9-1-2这个结构,或者说是这种结构。”
“啊?”
会议室里面的另外几人只觉得自己的大脑因为在短时间内接收了太多信息,已经濒临死机了:
“不用这种结构……难道用离心式压气机?”
气轮机的透平式压气机根据原理可以简单分为离心式和轴流式,一般来说,除了早期群魔乱舞的阶段之外,绝大多数涡喷/涡扇发动机都已经统一使用轴流式,只有一部分涡桨/涡轴发动机会采用离心式的设计。
“当然不是……”
常浩南有些无奈:
“我的意思是,采用更高效率的单级负荷来降低压缩机的级数,把三级风扇压缩成1级或者2级风扇,9级高压压气机变成6级或者7级,考虑到整个压缩系统在一台发动机里面的重量占比在60左右,如果能在这部分减少20的重量,那整个发动机的推重比少说能提高10左右。”
“伱们还记着上次开会的时候,我拿出来做算例的那个‘超高负荷吸附式弯掠联合前缘边条叶片’么?”
海谊德上次没去开会,但刘永全是去了的。
还听得很认真。
因此他第一个从刚刚的茫然中反应过来,点了点头:
“记得,我还记了笔记……”
他说着从随身携带的提包里面拿出一个本子,翻开到其中一页。
从这个略显破旧的痕迹上,可以看出他这段时间恐怕没少翻阅。
“那就好。”
常浩南用手指轻轻点了点笔记本上的标题部分:
“这个东西,就是咱们压气机设计部分的核心技术。”
“之前你已经学到的叶形设计,不管是端弯端掠、端壁造型也好、边条也好,都还是被动控制流动分离的手段。”
“我之所以要提到吸附式叶片,就是要在此基础上,利用主动控制手段,进一步提高单级压比,让每一级发挥过去一级半到两级的压缩作用!”
正式开工!
实际上,早在1904年,德国力学家路德维希·普朗特(不是那个研究量子力学的普朗克,尽管两个人都是德国人并且大致生活在同一时代)就在圆柱绕流附面层实验中发现,可以通过主动抽吸附面层来延缓气流分离。
只不过一直到眼下这个时候,还没人认真地考虑过要把这个原理应用到压气机设计领域中来。
包括麻省理工的一些前沿实验室,也只是提出过相关的可能性,并且陆续开始进行一些机理和可行性层面的研究。
所以也不能怪刘永全等人之前没往这个层面去想。
常浩南之前毕竟是以“算例”的方式引出了这个超高负荷吸附式弯掠联合前缘边条叶片,并没有提到过这个东西的具体应用场景,以及基本原理。
而且说实话,对于当时坐在下面的绝大多数听众来说,仅仅理解那个叶片设计过程中的数值计算方式,就并不是一件容易的事情。
能像刘永全这样搞出小半本笔记的,更已经是各中翘楚了。
来不及多想也很正常。
“附面层抽吸可以将压气机中的高熵低能流体抽走,而压缩前初始流体的熵值越低,在多级压气机中对相同质量流体提升相同的压力所消耗的功就越少,压缩效率也随之升高……”
“这是卡门动量方程的公式,甚至无需计算机进行辅助,只从理论层面进行推导,我们就可以发现,在附面层附着良好时抽吸,下游某位置处动量厚度的减小量和抽吸位置处的减小量相同;而在附面层近分离时抽吸,下游某位置处动量厚度的减小量与抽吸位置处的减小量相比被放大了一个指数倍……”
附面层抽吸的基本原理并未突破大学本科普通物理学的内容,即便涉及到工程应用,众人在常浩南的一番解释之下也很快理解了接下来需要做什么:
“所以我们必须要找到附面层发生流动分离的具体位置,这样才能……尽可能的提高单级压气机的效率?”
“没错。”
常浩南欣慰点头:
“这个技术目前有两个应用方向,一是我刚刚说的,高切线速度的吸附式压气机可用于军用的小涵道比涡扇发动机上,用一级吸附式风扇代替原来多级风扇,从而减轻风扇重量,实现更高的推重比。”
“二是低切线速度的吸附式压气机,可以应用在大涵道比的涡扇发动机上,在相同压比下实现叶尖切线速度和转速的降低,改善发动机的振动特性以及声学性能,当然,这对于我们来说应该是以后的事情了……”
“所以在开展总体设计之前,要先把这些技术问题解决掉……”
旁边的海谊德已经打开一个笔记本开始记笔记了。
尽管他不是太行项目在技术层面的总负责人,但身为总工程师,不了解整个研发过程肯定不成。
更何况海谊德本身也是技术出身,哪怕已经离
耽美小说